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In this paper, we use a recently developed energy relaxation theory by Coquel and
Perthame and high order weighted essentially nonoscillatory (WENO) schemes to
simulate the Euler equations of real gas. The main idea is an energy decomposition
under the formε= ε1+ ε2, whereε1 is associated with a simpler pressure law (γ -law
in this paper) and the nonlinear deviationε2 is convected with the flow. A relaxation
process is performed for each time step to ensure that the original pressure law
is satisfied. The necessary characteristic decomposition for the high order WENO
schemes is performed on the characteristic fields based on theε1 γ -law. The algorithm
only calls for the original pressure law once per grid point per time step, without
the need to compute its derivatives or any Riemann solvers. Both one- and two-
dimensional numerical examples are shown to illustrate the effectiveness of this
approach. c© 1999 Academic Press
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1. INTRODUCTION

In this paper we consider the Euler equations for a real compressible inviscid fluid,

∂tρ + div(ρu) = 0, t ≥ 0, x ∈Rd,

∂tρu+ div(ρu⊗ u+ p) = 0,
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∂t E + div((E + p)u) = 0, (1.1)

E = 1

2
ρ|u|2+ ρε,

where the quantitiesρ, u, p, E, andε represent the density, velocity, pressure, total energy,
and specific internal energy, respectively. In addition, there is an equation of state (EOS)
of the form p = p(ρ, ε) associated with a strictly convex entropyρs(ρ, ε) which satisfies
the entropy inequalities

∂tρs+ div(ρsu) ≤ 0. (1.2)

The pressure law is, furthermore, assumed to satisfy

p,ε(ρ, ε) > 0, p(ρ, 0) = 0, p(ρ,∞) = ∞. (1.3)

In the literature research has been done in order to extend classical schemes designed for
perfect gas to real gases. Collela and Glaz [1] extended the numerical procedure for obtaining
the exact Riemann solution to a real-gas case, Grossman and Walters [7], Liou, van Leer,
and Shuen [13] extended the method of flux-vector splitting and flux-difference splitting,
Montagné, Yee, and Vinokur [16] developed second-order explicit shock-capturing schemes
for real gas, Glaister [5] presented an extension of the approximate linearized Riemann
solver with different averaged matrices, while Loh and Liou [15] used the generalization
of their Lagrangian approach (originally proposed for perfect gas) to obtain the real gas
Riemann solution.

Most of the previous proposed methods would require a computation of the pressure law
and its derivatives, or a Riemann solver. This is not only costly but also problematic when
there are no analytical expressions of the pressure law (for example, if we have only table
values).

Recently Coquel and Perthame [2] have introduced an energy relaxation theory for Euler
equations of real gas. The main idea is to introduce a relaxation of the nonlinear pressure law
by considering an energy decomposition under the formε= ε1+ ε2. The internal energy
ε1 is associated with a simpler pressure lawp1 (which is taken as theγ -law in this paper),
while ε2 stands for the nonlinear perturbation and is simply convected by the flow. These
two energies are also subject to a relaxation process, and in the limit of an infinite relaxation
rate, one recovers the initial pressure lawp.

From this general framework, Coquel and Perthame have also deduced the extension to
general pressure laws of classical schemes for polytropic gases, which only uses a single
call to the pressure law per grid point and time step. No derivatives of the pressure law
or any Riemann solvers need to be computed. Another advantage of their approach is that
its implementation does not depend on the particular expression of the equation of states.
For the first-order Godunov scheme, they have shown that this extension satisfies stability,
entropy, and accuracy conditions. Numerical examples have been provided using first-order
schemes by In [9].

For Euler equations of polytropic gas, high order ENO (essentially nonoscillatory) and
WENO (weighted ENO) schemes [8, 18–20, 14, 10, 21] have been quite successful in pro-
viding high resolution results for complicated flow structures and shocks. The idea of ENO
schemes is to adaptively choose local stencils so that interpolation across a discontinuity is
avoided as much as possible. WENO uses a nonlinear combination of all stencils to improve
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upon accuracy and smoothness of numerical fluxes while maintaining the nonoscillatory
behavior of ENO near a discontinuity.

The aim of this paper is to study the implementation of this relaxation method with high-
order WENO schemes [10] for real gases. One- and two-dimensional numerical examples
will be given.

In Section 2 we provide the general framework of the energy relaxation theory of [2],
followed by a short description of high-order WENO schemes [10]. We then give the details
of the construction of the relaxed WENO schemes for general gases. In Section 3 numerical
examples are given. We start with a description of the different equations of states used in
this paper, followed by one-dimensional shock tube test problems. Two-dimensional test
cases of a smooth vortex, to test the accuracy of the schemes, and of the double Mach
reflection problem are then presented. Concluding remarks are given in Section 4. In the
appendices, we give the expressions of the Roe matrices for the relaxation system (A) and
the two-molecular vibrating gas (B).

2. IMPLEMENTATION OF THE ENERGY RELAXATION METHOD WITH WENO

2.1. Energy Relaxation Theory

The principle of the energy relaxation theory developed by Coquel and Perthame [2] is
to find a pressure lawp1(ρ

λ, ελ1) (simpler thanp, typically a polytropic law) and an internal
energyφ(ρλ, ελ1) so that the system (1.1) and the entropy inequality (1.2) can be recovered,
in the limit of an infinite relaxation rateλ (called theequilibrium limit), from the system
(called therelaxation system)

∂tρ
λ + div(ρλuλ) = 0, t ≥ 0, x ∈ Rd,

∂tρ
λuλ + div

(
ρλuλ ⊗ uλ + pλ1

) = 0,

∂t E
λ
1 + div

((
Eλ

1 + pλ1
)
uλ
) = λρλ(ελ2 − φ(ρλ, ελ1)), (2.1)

∂tρ
λελ2 + div

(
ρλuλελ2

) = −λρλ(ελ2 − φ(ρλ, ελ1)),
Eλ

1 =
1

2
ρλ|uλ|2+ ρλελ1,

wherep1(ρ
λ, ελ1) = (γ1 − 1)ρλελ1 with γ1 a given constant greater than 1. One can prove

[2] that the relaxation system (2.1) can be supplemented by entropy inequalities under the
form

∂tρ
λ6 + div(ρλ6uλ) ≤ REDλ := −λρλ(6,s1s1,ε1

−6,ε2

)(
ε2− φ

(
ρλ, ελ1

))
,

wheres1(ρ, ε1)= ργ1−1/ε1 and the specific entropy6 denotes an arbitrary function in
C1(R2

+) such thatρ6 is convex in(ρ, ρε1, ρε2) and that it can be written under the form
6 = 6(s1(ρ, ε1), ε2). REDλ represents the rate of entropy dissipation.

Formally, the original Euler system (1.1) will be recovered atλ→+∞ with

ε = ε1+ ε2 = ε1+ φ(ρ, ε1), (2.2)

provided that we have the condition (called theconsistency condition)

p(ρ, ε1+ φ(ρ, ε1)) = p1(ρ, ε1) = (γ1− 1)ρε1. (2.3)

This last condition can be fulfilled for any given choice ofγ1> 1.
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But, in addition to the conservative system (1.1), one also wants to recover at the limit
the entropy inequality (1.2). The following result, due to Coquel and Perthame [2], gives
this last condition under a characterization of the admissibleγ1.

THEOREM1. Assuming thatγ1 satisfies

γ1 > supρ,ε0(ρ, ε), where0(ρ, ε) = 1+ p,ε/ρ,
(2.4)

γ1 > supρ,εγ (ρ, ε), whereγ (ρ, ε) = ρ

p
p,ε + p,ε/ρ,

provided thatγ1 is finite, we then have

(i) there exists a(unique) specific entropy6(s1, ε2) such that at equilibrium(ε = ε1+
φ(ρ, ε1))

s(ρ, ε) = 6(s1(ρ, ε1), φ(ρ, ε1)),

(ii) this entropy is uniformly compatible with the relaxation procedure, i.e.

REDλ ≤ 0 for all λ > 0.

2.2. WENO Schemes

We use the fifth-order WENO scheme in [10]. For a scalar conservation law

ut + f (u)x = 0; (2.5)

the derivativef (u)x at the grid pointx= xj is approximated by a conservative flux differ-
ence,

f (u)x|x=xj
≈ 1

1x

(
f̂ j+1/2− f̂ j−1/2

)
. (2.6)

The WENO numerical fluxf̂ j+1/2 is computed as follows. For a positive wind direction
f ′(u) ≥ 0, we first define three third-order numerical fluxes:

f̂ 1
j+1/2 =

1

3
f (u j−2)− 7

6
f (u j−1)+ 11

6
f (u j ),

f̂ 2
j+1/2 = −

1

6
f (u j−1)+ 5

6
f (u j )+ 1

3
f (u j+1), (2.7)

f̂ 3
j+1/2 =

1

3
f (u j )+ 5

6
f (u j+1)− 1

6
f (u j+2).

A third-order ENO scheme will result if we choose one of the three third-order fluxes in
(2.7) adequately, according to the size of divided differences [19]. On the other hand, a
fifth-order linear scheme will result if we choose the flux as

f̂ linear
j+1/2 = d1 f̂ 1

j+1/2+ d2 f̂ 2
j+1/2+ d3 f̂ 3

j+1/2 (2.8)

with

d1 = 1

10
, d2 = 3

5
, d3 = 3

10
. (2.9)
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The fifth-order WENO scheme results if we choose the numerical flux as

f̂ j+1/2 = ω1 f̂ 1
j+1/2+ ω2 f̂ 2

j+1/2+ ω3 f̂ 3
j+1/2, (2.10)

with ωi defined by

ωi = αi∑3
s=1 αs

, αi = di

(ε + βi )2
, (2.11)

and

β1 = 13

12
( f (ui−2)− 2 f (ui−1)+ f (ui ))

2+ 1

4
( f (ui−2)− 4 f (ui−1)+ 3 f (ui ))

2,

β2 = 13

12
( f (ui−1)− 2 f (ui )+ f (ui+1))

2+ 1

4
( f (ui−1)− f (ui+1))

2, (2.12)

β3 = 13

12
( f (ui )− 2 f (ui+1)+ f (ui+2))

2+ 1

4
(3 f (ui )− 4 f (ui+1)+ f (ui+2))

2.

In all our numerical examplesε in (2.11) is taken as 10−6, as was done in [10]. The weights
in (2.11) are chosen so that in smooth regions (including at smooth extrema), the WENO
flux (2.10) behaves similarly to the linear flux (2.8) and is uniformly fifth-order accurate.
Near shocks, however, the WENO flux (2.10) behaves similarly to an ENO flux, in the sense
that any stencil crossing a discontinuity has a near-zero weight. For details of the derivation
see [10, 21].

If the wind direction is negative,f ′(u) ≤ 0, the procedure is symmetric to the case with
f ′(u) ≥ 0, with respect to the locationxj+1/2. In general, a flux splitting is used,

f (u) = f +(u)+ f −(u), (2.13)

such thatf +(u) has a positive wind direction andf −(u) has a negative wind direction:

d

du
f +(u) ≥ 0,

d

du
f −(u) ≤ 0. (2.14)

The procedure described above can then be applied tof +(u) and f −(u) separately. The
simplest flux splitting is the Lax–Friedrichs splitting,

f ±(u) = 1

2
( f (u)± αu), (2.15)

where

α = max
u
| f ′(u)|.

Notice that while first- and second-order schemes with a Lax–Friedrichs splitting are quite
dissipative, higher order schemes based on the Lax–Friedrichs fluxes usually give very good
results. We use Lax–Friedrichs fluxes in this paper.

For systems of conservation laws in this paper, we use both a component-wise version,
where the procedure described above is applied to each equation in the system separately,
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and a characteristic version, where locally we apply the procedure described above on
characteristic projections. For details about how to perform a local characteristic procedure
see, for example, [18, 19, 10].

2.3. Construction of the Relaxed WENO Scheme

The procedure to solve the Euler system (1.1) within the framework of the energy
relaxation theory is the following. Given the numerical equilibrium solution at the time
level tn

ρ(x, tn), u(x, tn), ε(x, tn), (2.16)

this approximation is advanced to the next time leveltn+1 = tn +1t in two steps:

• First step: relaxation. The two internal energiesε1(x, tn) andε2(x, tn) are obtained by
(2.2) and the consistency condition (2.3):

ε1(x, t
n) = p(ρ(x, tn), ε(x, tn))

(γ1− 1)ρ(x, tn)
,

(2.17)
ε2(x, t

n) = ε(x, tn)− ε1(x, t
n).

Notice that this step involves just one call to the pressure law per grid point and does not
involve any derivatives of the pressure law or any iterations.
• Second step: evolution in time. Fortn ≤ t ≤ tn+1, we solve the Cauchy problem for

the relaxation system (2.1), with zero on the right side,

∂tρ
λ + div(ρλuλ) = 0, t ≥ 0, x ∈ Rd,

∂tρ
λuλ + div

(
ρλuλ ⊗ uλ + pλ1

) = 0,

∂t E
λ
1 + div

((
Eλ

1 + pλ1
)
uλ
) = 0, (2.18)

∂tρ
λελ2 + div

(
ρλuλελ2

) = 0,

Eλ
1 =

1

2
ρλ|uλ|2+ ρλελ1,

and the initial data,

ρ(x, tn), u(x, tn), ε1(x, t
n), ε2(x, t

n), (2.19)

and we obtain at timetn+1−,

ρ(x, tn+1−), u(x, tn+1−), ε1(x, t
n+1−), ε2(x, t

n+1−). (2.20)

At last, we compute the equilibrium solution at timetn+1 by

ρ(x, tn+1) = ρ(x, tn+1−),

u(x, tn+1) = u(x, tn+1−), (2.21)

ε(x, tn+1) = ε1(x, t
n+1−)+ ε2(x, t

n+1−).
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Remark 1. The first step is clearly a relaxation phase, as it is equivalent to the solution
of the ODE problem fort ≥ tn,

dtρ
λ = 0,

dtρ
λuλ = 0,

(2.22)
dt E

λ
1 = λρλ

(
ελ2 − φ

(
ρλ, ελ1

))
,

dtρ
λελ2 = −λρλ

(
ελ2 − φ

(
ρλ, ελ1

))
,

with initial data at time leveltn,

ρ(x, tn−), u(x, tn−), ε1(x, t
n−), ε2(x, t

n−). (2.23)

and we letλ→+∞.

We now describe the numerical method we will use for the step of evolution in time.
Although our numerical results concern both one- and two-dimensional problems, for sim-
plicity of presentation we shall restrict our description to one space dimension. As we
are using the finite difference version of WENO schemes in [10], extensions to two and
more spatial dimensions are simply done dimension by dimension. Essentially, the two-
dimensional code is the one-dimensional code with an outside “do loop.”

We have to solve fortn ≤ t < tn+1 the system of four equations,

∂tU + ∂x F(U ) = 0, + initial conditions given by (2.19), (2.24)

where

U = (ρ, ρu, E1, ρε2)
T,

(2.25)
F(U ) = (ρu, ρu2+ p1, (E1+ p1)u, ρuε2

)T
.

In order to solve the ordinary differential equation

d

dt
U = L(U ), (2.26)

whereL(U ) is a discretization of the spatial operator, we use a third-order TVD Runge–
Kutta scheme [18].

Remark 2. We have two possibilities for the placement of the relaxation step: each
Runge–Kutta inner stage or each time step. With the first example of section 3.3, we show
that the two approaches give nearly identical results in accuracy. Of course the second
approach is less costly. We thus perform all our calculations using the second approach.

We now discretize the space into uniform intervals of size1x and denotexj = j1x.
Various quantities atxj will be identified by the subscriptj .

We use the WENO procedure described in the previous subsection to obtain the spatial
operatorL j (U ) which approximates−∂x F(U ) at xj . We have tested several possibilities
for the definition ofL(U ) based on WENO schemes. The first one is to use a WENO
Lax–Friedrichs scheme with a full characteristic decomposition. For this purpose we need
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to compute a Roe matrix for the system (2.24) and its eigenvalues and eigenvectors. The
details of this derivation are included in Appendix A.

The other possibility is to compute the first three components of the numerical flux
F̂1

j+1/2, F̂2
j+1/2, F̂3

j+1/2 by using a WENO Lax–Friedrichs scheme with a decomposition on
the Euler system characteristics and to obtain the last numerical fluxF̂4

j+1/2 with a scalar
WENO Lax–Friedrichs scheme. This is possible because the first three equations of system
(2.24) are independent from the last one.

Remark 3. We have also tried to compute the last numerical flux by using a first-order
scheme specially designed in order to preserve the maximum principle forε2 [11]. But with
this approach, we lose the accuracy of the high-order WENO scheme also for the other
variables.

Remark 4. In order to make comparisons in the numerical results we have also im-
plemented a WENO Lax–Friedrichs scheme with a full characteristic decomposition for
a two molecular vibrating gas (see next section for a description of the related EOS). For
this purpose we need a definition of the corresponding Roe average matrix. We give it in
Appendix B. For the numerical comparisons for the other real gases we use a component-
wise WENO Lax–Friedrichs scheme which requires only the computation of the sound
velocity

c =
√

p,ρ + p(p,ε/ρ2). (2.27)

3. NUMERICAL RESULTS

3.1. Description of the Different Equations of States

We present here several equations of states which we will use in the computation. We
find the second one in the paper of In [9], while the third one comes from Glaister [4]):

• Polytropic ideal gas. The equation of states for a polytropic ideal gas (also called
perfect gas) is

p(ρ, ε) = (γ − 1)ρε. (3.1)

Then we have

p,ρ = (γ − 1)ε, p,ε = (γ − 1)ρ. (3.2)

Air under normal conditions (p andT moderate enough) can be considered as a perfect gas
with γ = 7/5= 1.4 (approximately a mixture of two diatomic molecular species: 20%O2;
80% N2).
• Two-molecular vibrating gas. When the temperature increases the vibrational motion

of oxygen and nitrogen molecules in air becomes important, and specific heats vary with
temperatures. So that one must consider the thermally perfect, calorically imperfect model
for two-molecular vibrating gas,

p(ρ, ε) = rρT(ε), (3.3)

where the temperatureT is given by the implicit expression

ρε = ctr
v T + ρ

(
α2vib

exp(2vib/T)− 1

)
, (3.4)
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with r = 287.086J· kg−1 · K−1, Ctr
v = r/(γtr−1),γtr = 1.4,2vib= 103 K , andα= r . Then

we have

p,ρ = rT (ε), p,ε = rρ

ε′(T(ε))
. (3.5)

• Osborne model.R. K. Osborne from the Los Alamos Scientific Laboratory has devel-
oped a quite general equation of states in the form [17]

p(ρ, ε) = 1

E + φ0
(ζ(a1+ a2ζ )+ E(b0+ ζ(b1+ b2ζ )+ E(c0+ c1ζ ))), (3.6)

whereE= ρ0ε andζ = ρ/ρ0 − 1 and the constantsρ0, a1, a2, b0, b1, b2, c0, c1, φ0 de-
pend on the material in question. The typical values for water areρ0= 10−2, a1= 3.84×
10−4, a2= 1.756×10−3, b0= 1.312×10−2, b1= 6.265×10−2, b2= 0.2133,c0= 0.5132,
c1= 0.6761, andφ0= 2.× 10−2. Then we have

p,ρ = 1

ρ0(E + φ0)
((a1+ 2a2ζ )+ E(b1+ 2b2ζ + Ec1)),

(3.7)
p,ε = − ρ0

E + φ0
p+ ρ0

E + φ0
(b0+ ζ(b1+ b2ζ )+ 2E(c0+ c1ζ )).

3.2. One-Dimensional Cases

EXAMPLE 1 (1D Riemann problems with perfect gas). We consider here two well-known
problems which have the following Riemann type initial conditions:

u(x, 0) =
{

uL if x< 0,

uR if x> 0.

The first one is Sod’s problem [22]. The initial data are

(ρL , uL , pL) = (1, 0, 1), (ρR, uR, pR) = (0.125, 0, 0.1).

The second one is proposed by Lax [12] with

(ρL , uL , pL) = (0.445, 0.698, 3.528), (ρR, uR, pR) = (0.5, 0, 0.571).

Of course, for this perfect gas situation there is no need to use the relaxation model
in practice. The purpose of this test problem is to test the behavior of different relaxation
models (differentγ1’s) and different ways of treating the relaxed system (fully characteristic
and partially characteristic for the first three equations only).

For this example, a uniform grid of 100 points are used and every 2 points are drawn in
the figures.

We first give, in Table I, a CPU time comparison among the traditional WENO charac-
teristic scheme for the perfect gas, and the WENO scheme applied to the relaxation system,
both with a fully characteristic decomposition and with a partially characteristic decomposi-
tion for the first three equations only. The calculation is done on a SUN Ultra1 workstation.
We can see that, while a fully characteristic decomposition is significantly more costly, the
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TABLE I

CPU Time (in seconds) of Different Schemes for the Sod and Lax

Shock Tube Problems for a Perfect Gas

WENO with Relaxed WENO with Relaxed WENO with
Case characteristic full characteristic partial characteristic

Sod shock 2.28 3.49 2.91
Lax shock 3.32 4.93 4.08

partially characteristic decomposition is only slightly more costly than the WENO scheme
applied to the original perfect gas Euler equations.

In Figs. 1 and 3, we present the comparison for the Sod’s and Lax’s shock tube problems,
of the fifth-order WENO schemes, applied directly to the perfect gas Euler equations using
a characteristic decomposition and applied to the relaxation model withγ1= 3, using only
partial characteristic decomposition of the first three equations. We can see that the results
are very close, except for the slight over- and undershoots in entropy for the relaxation
model calculation. This indicates the feasibility of using the relaxation model.

FIG. 1. Sod’s shock tube problem with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial charac-
teristic withγ1 = 3.0.
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FIG. 2. Sod’s shock tube problem with WENO-LF-5. Comparisons of partial and full characteristic de-
compositions for the relaxation model withγ1= 3 (a),γ1= 3 andγ1= 30 for the relaxation model with partial
characteristic decomposition (b), and the relaxation model with partial characteristic decomposition withγ1= 3
versus the component-wise WENO applied to the original perfect gas Euler equations (c).

In Figs. 2 and 4, we present the comparison for the Sod’s and Lax’s shock tube prob-
lems, of the fifth-order WENO schemes. The top left figure compares the full characteristic
decomposition for the relaxation model, with a partial characteristic decomposition for the
first three equations only, forγ1= 3. We can see that the results are quite close, again in-
dicating the feasibility of using the less costly partial characteristic decomposition for the
relaxation model. The top right figure compares the effect of differentγ1’s in the relaxation
model. The apparently biggerγ1 corresponds to larger numerical dissipation. This indicates
that one should always choose the smallest possibleγ1, subject to stability considerations.
The bottom figure compares the relaxation WENO results forγ1= 3 and a partial char-
acteristic decomposition, with a component-wise WENO scheme applied directly on the
original perfect gas Euler equations. Although neither uses the correct characteristic infor-
mation, apparently the relaxation model results are better than the componentwise results,
especially for the Lax’s problem in Fig. 4.

EXAMPLE 2 (1D Riemann problems with real gases). In this example we compute the
solutions to the Riemann shock tube problem for the two-molecular vibrating gas (3.3)–(3.5)
and the Osborne model (3.6)–(3.7), with the following initial conditions in Table II.
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TABLE II

Initial Conditions for the Test Cases for Real Gases

Specific internal
Case State Density Velocity energy

A Left 0.066 0.0 7.22e6
Right 0.030 0.0 1.44e6

B Left 1.40 0.0 2.22e6
Right 0.14 0.0 2.24e6

C Left 1.2900 0.0 1.95e6
Right 0.0129 0.0 2.75e6

D Left 1.00 0.0 2.00e6
Right 0.01 0.0 2.50e5

E Left 0.01 2200.0 1.44e5
Right 0.14 0.0 4.00e5

FIG. 3. Lax’s shock tube problem with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial charac-
teristic withγ1 = 3.0.
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FIG. 4. Lax’s shock tube problem with WENO-LF-5. Comparisons of partial and full characteristic de-
compositions for the relaxation model withγ1= 3 (a),γ1= 3 andγ1= 30 for the relaxation model with partial
characteristic decomposition (b), and the relaxation model with partial characteristic decomposition withγ1= 3
versus the component-wise WENO applied to the original perfect gas Euler equations (c).

For this example, a uniform grid of 200 points are used and every four points are drawn
in the figures. Also, the “exact solutions” in the figures are obtained with the best scheme,
using 2000 points.

We first give a CPU time comparison between the full characteristic decomposition for
the original model and the partial characteristic decomposition, using only the first three
equations of the relaxation model, for the two-molecular vibrating gas model, in Table III.
We can see that the partial characteristic decomposition for the relaxed model is usually less
than half as costly than the full characteristic version for the original system. Although the
relaxed model has one more equation, it does not require the computation of the complicated
derivatives of the EOS.

In Fig. 5 we show the comparison of the full characteristic decomposition for the original
model and the partial characteristic decomposition using only the first three equations of
the relaxation model, for the two-molecular vibrating gas model, with the case A initial
condition. The results are almost identical, indicating that the relaxation model with a
partial characteristic decomposition works well with a much-reduced cost.

In Fig. 6 we show the comparison of the component WENO scheme on the original
system and the partially characteristic WENO scheme on the relaxed system withγ1 = 2.0,
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TABLE III

CPU Time (in Seconds) Depending on Full

or Partial Characteristic Decomposition with

a Two-Molecular Vibrating Gas

WENO with Relaxed WENO with
Case characteristic partial characteristic

A 12.68 5.21
B 4.8 2.63
C 12.53 4.87
D 15.0 5.35
E 15.0 7.84

for the Osborne gas model with the case A initial condition. We can see that the result of the
relaxed model is much better, especially for the density. This indicates that the relaxation
model is a good one for the computation of real gases.

In Fig. 7 we show the comparison of takingγ1= 10, which satisfies the stability condition
(2.4), andγ1= 2, which satisfies only the second inequality in the stability condition (2.4) for
the partial characteristic decomposition using only the first three equations of the relaxation

FIG. 5. Case A+ two vibrating molecular gas model with WENO-LF-5 characteristic and relaxed WENO-
LF-5 partial characteristic withγ1= 1.5.
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FIG. 6. Case A+ Osborne gas model with componentwise WENO-LF-5 for the original system and relaxed
WENO-LF-5 partial characteristic withγ1 = 2.0.

model and the Osborne gas model with the case A initial condition. We can see that the
γ1= 2 results are stable and less dissipative, indicating that in practice one does not always
have to chooseγ1 satisfying both inequalities in condition (2.4).

We have also tested the same problems for the other initial condition cases B, C, D, and E.
The results are mostly similar qualitatively, as in case A. To save space we will not present
the results here.

3.3. Two-Dimensional Cases

EXAMPLE 3 (An isentropic vortex). This example is used to verify the accuracy of the
relaxation approach, especially the placement of the relaxation steps during time stepping.
The gas is ideal but we still use the relaxation model. We consider the following idealized
problem for the Euler equations in 2D: the mean flow isρ = 1, p = 1 and(u, v) = (1, 1)
(diagonal flow). We add to this flow an isentropic vortex (perturbation in(u, v) and the
temperatureT = p/ρ; no perturbation in the entropyS= P/ργ ),

(δu, δv) = ε

2π
exp

(
1− r 2

2

)
(−ȳ, x̄), δT = − (γ − 1)ε2

8γπ2
exp(1− r 2), δS= 0,

where(x̄, ȳ) = (x − 5, y− 5), r 2 = x̄2+ ȳ2, and the vortex strengthε = 5. See [21].
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FIG. 7. Case A+Osborne gas model with the relaxed WENO-LF-5 partial characteristic withγ1= 10.0 and
γ1= 2.0.

The computational domain is taken as [0, 10, ] × [0, 10], extended periodically in both
directions. This allows us to perform long-time simulation without having to deal with a
large domain.

It is clear that the exact solution of the Euler equation with the above initial and boundary
conditions is just the passive convection of the vortex with the mean velocity.

In Table IV we show the accuracy result att = 10 (one time period). We can see that
WENO for the relaxed model withγ1= 3 gives a somewhat larger error than WENO applied
directly to the original system, but the order of accuracy is correct. Moreover, to place the
relaxation step for each Runge–Kutta inner stage or just for each time step seems to give

TABLE IV

L1 Error and Order of Accuracy at t = 10 (1 Period)

Relaxed WENO Relaxed WENO
WENO each time step each R-K step

Nb. points L1 error Accuracy L1 error Accuracy L1 error Accuracy

20× 20 1.07e-2 1.22e-2 1.22e-2
40× 40 1.06e-3 3.3 2.16e-3 2.5 2.17e-3 2.5
80× 80 6.50e-5 4.0 1.77e-4 3.6 1.78e-4 3.6

160× 160 2.09e-6 4.9 7.57e-6 4.6 7.60e-6 4.6
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FIG. 8. Double-Mach reflection, perfect gas, 480× 120 grid points.

almost identical results. We have thus used the less costly version of putting the relaxation
step for every time step in all the numerical examples in this paper.

EXAMPLE 4 (Double Mach reflection). The computational domain is chosen to be
[0, 4]× [0, 1], although only part of it ([0, 3]× [0, 1]) is shown. The reflecting wall lies at
the bottom of the computational domain, starting fromx= 1/6. Initially a right-moving
Mach 10 shock is positioned at(x, y) = (1/6, 0) and makes a 60◦ angle with thex axis.
For the bottom boundary, the exact postshock condition is imposed for the part fromx = 0
to x= 1/6 and a reflective boundary condition is used for the rest. At the top boundary of
our computational domain, the flow values are set to describe the exact motion of the Mach
10 shock (See [23] for a detailed description of this problem.)
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FIG. 9. Double-Mach reflection, perfect gas, 960× 240 grid points.

First we present the results for a perfect gas. We compare the results using WENO directly
on the original system [10] and using it on the relaxed model withγ1 = 1.5 andγ1 = 3.0
in Fig. 8 for a mesh of 480×120 points and Fig. 9 for a mesh of 960× 240 points. We can
see that the relaxed model results are quite satisfactory, although a biggerγ1 results in some
small oscillations.

Next, we show the results of the same problem with the two-molecular vibrating gas.
The purpose here is to show that the relaxation model-based algorithm does work, rather
than the details of the flow with more physical models. The results with both a 480× 120
grid and a 960× 240 grid are shown in Fig. 10. Comparing with the results in [3], we can
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FIG. 10. Double-Mach reflection, two vibrating molecular gas.

see that the main features, such as the main shock being closer to the bottom boundary and
the shock below the triple point being bent, are also observed here.

4. CONCLUDING REMARKS

We have applied the fifth-order WENO schemes to a relaxation model to compute the
Euler equations of real gases. The algorithm does not depend on the specific form of the
equation of states and does not need to compute the derivatives of the pressure law. One-
and two-dimensional examples are shown to illustrate the accuracy and robustness of the
algorithm. The algorithm seems to work well, even for strong (Mach 10) shocks. The choice
of γ1 in the relaxation model influences the numerical results, as the biggerγ1 implies larger
numerical viscosity. In practice one should chooseγ1 as small as possible, subject to stability
restraints.

APPENDIX A: ROE MATRIX FOR THE RELAXATION SYSTEM

Let us consider two statesUl andUr ; then the Roe matrix for the relaxation system (2.24)
is

Ā(Ul ,Ur ) =


0 1 0 0

(γ1− 3) ū2

2 −(γ1− 3)ρ̄ū (γ1− 1) 0

ū
(−H̄1+ (γ1− 1) ū2

2

)
H̄1− (γ1− 1)ū2 γ1ū 0

−ε̄2ū ε̄2 0 ū

 , (A.1)
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where the averaged state ¯ρ, ū, H̄1 are defined by

ρ̄ = √ρl
√
ρr , ū = αl ul + αr ur ,

H̄1 = αl H1l +αr H1r , ε̄2 = αl ε1l + αr ε1r ,
(A.2)

with

H1 = (e1+ p1)/ρ,

αl =
√
ρl√

ρl +√ρr
, αr = 1− αl =

√
ρr√

ρl +√ρr
.

(A.3)

The four eigenvalues of̄A are

ā1 = ū− c̄, ā2 = ū, ā3 = ū+ c̄, ā4 = ū, (A.4)

where the averaged sound speedc̄ has the usual expression

c̄ =√γ1 p̄1/ρ̄. (A.5)

A set of right eigenvectors can be

r̄1 =


1

ū− c̄

H̄ − ūc̄
ε̄2

 , r̄2 =


1
ū
ū2

2

0

 , r̄3=


1

ū+ c̄

H̄ + ūc̄
ε̄2

 , r̄4=


0
0
0
1

 . (A.6)

And the corresponding orthogonal set of left eigenvectors is

l̄1=


1
2

(
b1+ ū

c̄

)
− 1

2

(
ūb2+ 1

c̄

)
b2

2

0

 , l̄2=


1− b1

b2ū

−b2

0

 , l̄3=


1
2

(
b1− ū

c̄

)
− 1

2

(
ūb2− 1

c̄

)
b2

2

0

 , l̄4=


−ε̄2b1

ε̄2ūb2

−ε̄2b2

1

 ,
(A.7)

where

b1 = (γ1− 1)ū2

2c̄2 , b2 = (γ1− 1)

c̄2 . (A.8)

APPENDIX B: ROE MATRIX FOR A TWO-MOLECULAR VIBRATING GAS

Let us consider two statesUl andUr ; then the Roe matrix for an Euler system of real gas
is (see [6] for details)

Ā(Ul ,Ur )=

 0 1 0

χ̄ + κ̄ū2/2 (2− κ̄)ū κ̄

ū(χ̄ + κ̄ū2/2− H̄) H̄ − κ̄ū2 (1+ κ̄)ū

 , (B.1)
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where ū, H̄ are the Roe average values of the velocity and the total specific enthalpy
(H = ε + 1/2u2+ p/ρ),

ū =
√
ρl ul +√ρr ur√
ρl +√ρr

, (B.2)

H̄ =
√
ρl Hl +√ρr Hr√
ρl +√ρr

, (B.3)

andχ̄ andκ̄ are two parameters which must satisfy

1p = κ̄1ρε + χ̄1ρ (B.4)

with 1ρ = ρr − ρl ,1ρε = ρr εr − ρl εl , and1p = p(ρr , εr )− p(ρl , εl ).
The definitions for ¯κ andχ̄ proposed by In [9] for a two-molecular vibrating gas are

κ̄ =


r (T(εr )− T(εl ))

εr − εl
if εr 6= εl ,

1
2

( p,ε(ρl ,ε)

ρl
+ p,ε(ρr ,ε)

ρr

)= r
ε′(T(ε)) , if εr = εl = ε,

(B.5)

κ̄ =


1 p−κ̄1ρε

1ρ
, if ρr 6= ρl ,

1
2

(
p,ρ(ρ, εl )− εl

ρ
p,ε(ρ, εl )+ p,ρ(ρ, εr )− εr

ρ
p,ε(ρ, εr )

)
= 1

2r (T(εl )− εl T ′(εl )+ T(εr )− εr T ′(εr )), if ρr = ρl = ρ.
(B.6)

The definitions of the eigenvalues and right and left eigenvectors are easy to obtain and
are omitted here.
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