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In this paper, we use a recently developed energy relaxation theory by Coquel and
Perthame and high order weighted essentially nonoscillatory (WENO) schemes to
simulate the Euler equations of real gas. The main idea is an energy decomposition
under the forne = ¢; + ¢,, Whereg; is associated with a simpler pressure lasldw
in this paper) and the nonlinear deviatigns convected with the flow. A relaxation
process is performed for each time step to ensure that the original pressure law
is satisfied. The necessary characteristic decomposition for the high order WENO
schemes is performed on the characteristic fields based enthlaw. The algorithm
only calls for the original pressure law once per grid point per time step, without
the need to compute its derivatives or any Riemann solvers. Both one- and two-
dimensional numerical examples are shown to illustrate the effectiveness of this
approach. (© 1999 Academic Press
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1. INTRODUCTION

In this paper we consider the Euler equations for a real compressible inviscid fluid,
dp +div(ipu) =0, t>0,xeRY,
dpu+div(pu® u+ p) =0,
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&E + div((E + p)u) = 0, (1.1)
E = 1 lul® +
- 210 IO‘?’

where the quantities, u, p, E, ande represent the density, velocity, pressure, total energ;
and specific internal energy, respectively. In addition, there is an equation of state (E
of the formp = p(p, €) associated with a strictly convex entrop$(p, ¢) which satisfies
the entropy inequalities

ot pS + div(psu) < 0. (1.2)
The pressure law is, furthermore, assumed to satisfy

Pe(p,e) >0, p(p,0) =0, p(p,o0)=o00. (1.3)

In the literature research has been done in order to extend classical schemes design
perfectgastoreal gases. Collelaand Glaz [1] extended the numerical procedure for obtal
the exact Riemann solution to a real-gas case, Grossman and Walters [7], Liou, van L
and Shuen [13] extended the method of flux-vector splitting and flux-difference splittir
Montagr€, Yee, and Vinokur [16] developed second-order explicit shock-capturing schen
for real gas, Glaister [5] presented an extension of the approximate linearized Riem
solver with different averaged matrices, while Loh and Liou [15] used the generalizati
of their Lagrangian approach (originally proposed for perfect gas) to obtain the real
Riemann solution.

Most of the previous proposed methods would require a computation of the pressure
and its derivatives, or a Riemann solver. This is not only costly but also problematic wt
there are no analytical expressions of the pressure law (for example, if we have only t:
values).

Recently Coquel and Perthame [2] have introduced an energy relaxation theory for E
equations of real gas. The main ideais to introduce a relaxation of the nonlinear pressure
by considering an energy decomposition under the foeae; + ¢,. The internal energy
e1 is associated with a simpler pressure Ipwhich is taken as the-law in this paper),
while e, stands for the nonlinear perturbation and is simply convected by the flow. The
two energies are also subject to a relaxation process, and in the limit of an infinite relaxa
rate, one recovers the initial pressure lpw

From this general framework, Coquel and Perthame have also deduced the extensi
general pressure laws of classical schemes for polytropic gases, which only uses a s
call to the pressure law per grid point and time step. No derivatives of the pressure
or any Riemann solvers need to be computed. Another advantage of their approach is
its implementation does not depend on the particular expression of the equation of st:
For the first-order Godunov scheme, they have shown that this extension satisfies stak
entropy, and accuracy conditions. Numerical examples have been provided using first-c
schemes by In [9].

For Euler equations of polytropic gas, high order ENO (essentially nonoscillatory) a
WENO (weighted ENO) schemes [8, 18-20, 14, 10, 21] have been quite successful in |
viding high resolution results for complicated flow structures and shocks. The idea of EI
schemes is to adaptively choose local stencils so that interpolation across a discontinu
avoided as much as possible. WENO uses a nonlinear combination of all stencils to imp
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upon accuracy and smoothness of numerical fluxes while maintaining the nonoscille
behavior of ENO near a discontinuity.

The aim of this paper is to study the implementation of this relaxation method with hi
order WENO schemes [10] for real gases. One- and two-dimensional numerical exan
will be given.

In Section 2 we provide the general framework of the energy relaxation theory of |
followed by a short description of high-order WENO schemes [10]. We then give the det
of the construction of the relaxed WENO schemes for general gases. In Section 3 nume
examples are given. We start with a description of the different equations of states us
this paper, followed by one-dimensional shock tube test problems. Two-dimensional
cases of a smooth vortex, to test the accuracy of the schemes, and of the double
reflection problem are then presented. Concluding remarks are given in Section 4. I
appendices, we give the expressions of the Roe matrices for the relaxation system (A
the two-molecular vibrating gas (B).

2. IMPLEMENTATION OF THE ENERGY RELAXATION METHOD WITH WENO

2.1. Energy Relaxation Theory

The principle of the energy relaxation theory developed by Coquel and Perthame [
to find a pressure law, (o*, 1) (simpler thanp, typically a polytropic law) and an internal
energyp (p*, &7) so that the system (1.1) and the entropy inequality (1.2) can be recove
in the limit of an infinite relaxation rate (called theequilibrium limif), from the system
(called therelaxation system

dp* +div(p*u*) =0, t>0,xeRY,
dp'u* +div(p*u* @ Ut + p) =0,
®EL +div((E} + py)u*) = ao™ (5 — ¢ (p*, €1)), (2.1)
dptey + div(pkuxsé) = —Ap* (sé — ¢(,0A, 8?{)),
Ei = %pklukl2 + p’ey,
wherepy(p*, }) = (y1 — 1)p”e} with y; a given constant greater than 1. One can pro\

[2] that the relaxation system (2.1) can be supplemented by entropy inequalities unde
form

& p* T 4+ div(p*Tut) < RED' := —Apk(Z,SlslAgl - 2,82) (82 — (p(,o’\, si))

wheres;(p, e1) = p"~1/e1 and the specific entropg denotes an arbitrary function in
Cl(Ri) such thato T is convex in(p, pe1, pe2) and that it can be written under the form
¥ = X(s1(p, 1), €2). RED" represents the rate of entropy dissipation.

Formally, the original Euler system (1.1) will be recovered at- +oo with

e=e1+e2=e1+¢(p,e1), (2.2)
provided that we have the condition (called ttensistency conditign
P(p, e1+ ¢ (p, 1) = pa(p, €1) = (y1 — Dper. (2.3)

This last condition can be fulfilled for any given choiceyef> 1.
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But, in addition to the conservative system (1.1), one also wants to recover at the li
the entropy inequality (1.2). The following result, due to Coquel and Perthame [2], giv
this last condition under a characterization of the admissible

THEOREM1. Assuming thay, satisfies
y1>sup, . .['(p,e), wherel'(p,&) =1+ p./p,

p (2.4)
Y1 > sup,.v(p,¢), wherey(p,¢) = Bp,e + Pe/ps

provided thaty; is finite, we then have

(i) there exists dunique specific entropye (s1, £2) such that at equilibriunge = 1 +
d(p, 1)

S(p, &) = Z(s1(p, €1). d(p. 1)),
(i) this entropy is uniformly compatible with the relaxation procediee

RED' <0 forall x> 0.

2.2. WENO Schemes
We use the fifth-order WENO scheme in [10]. For a scalar conservation law
ur + f(Wx =0; (2.5)

the derivativef (u)y at the grid poinix = x; is approximated by a conservative flux differ-
ence,

1. .
F Wl ~ o (Fi2 = Fioa) - (2.6)

The WENO numerical qufojH/2 is computed as follows. For a positive wind direction
f’(u) > 0, we first define three third-order numerical fluxes:

fli,= f(uj_z) f(u, p+ f(u ),

A 1

ff+1/2=—éf(uj71>+6f<uj)+§f(u,-+1>, 2.7)

. 1 5 1

1= éf(uj) + éf(uj+1) - éf(uj+2)-
A third-order ENO scheme will result if we choose one of the three third-order fluxes
(2.7) adequately, according to the size of divided differences [19]. On the other hanc
fifth-order linear scheme will result if we choose the flux as

fljlrfﬁrz =dy 7 i+12 + 2 fz (412 T s f3 j+1/2 (2.8)

with

= Oh=o, di= —. (2.9)
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The fifth-order WENO scheme results if we choose the numerical flux as

finz=o1flp+oaffa, +osfig,. (2.10)
with w; defined by
O = e —, o= ———, (2.12)
D a1 Us (e + Bi)

and
13 , 1 2
B = Tz(f(uifz) —2f(Ui-) + fu) + z(f(uifz) —4f(ui—y) +3f(Uui))~,
13 , 1 5
B2 = Tz(f(ui—l) —2f(u) + fUi)° + Zl(f(ui—l) — f(ui2)%, (2.12)
13 , 1 5
Bs = 1—2(f(ui) —2f (Ui + FUis2)° + Z(3f(ui) —4f Uiz + F(ui2)”
In all our numerical examplesin (2.11) is taken as 1@, as was done in [10]. The weights
in (2.11) are chosen so that in smooth regions (including at smooth extrema), the WE
flux (2.10) behaves similarly to the linear flux (2.8) and is uniformly fifth-order accura
Near shocks, however, the WENO flux (2.10) behaves similarly to an ENO flux, in the se
that any stencil crossing a discontinuity has a near-zero weight. For details of the deriv:
see [10, 21].
If the wind direction is negativef’(u) < 0, the procedure is symmetric to the case witl
f’(u) > 0, with respect to the locatiaxy;1/2. In general, a flux splitting is used,

fu=frw+ f (), (2.13)

such thatf ™ (u) has a positive wind direction anfd™ (u) has a negative wind direction:
d . d __
ﬁf (w >0, @f (uw <o0. (2.14)

The procedure described above can then be applidd ta) and f ~(u) separately. The
simplest flux splitting is the Lax—Friedrichs splitting,

1
f¥u) = é(f(u)i(xu), (2.15)
where
a = mJaxl f/(u].
Notice that while first- and second-order schemes with a Lax—Friedrichs splitting are ©
dissipative, higher order schemes based on the Lax—Friedrichs fluxes usually give very
results. We use Lax—Friedrichs fluxes in this paper.

For systems of conservation laws in this paper, we use both a component-wise ver
where the procedure described above is applied to each equation in the system sepa
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and a characteristic version, where locally we apply the procedure described above
characteristic projections. For details about how to perform a local characteristic procec
see, for example, [18, 19, 10].

2.3. Construction of the Relaxed WENO Scheme

The procedure to solve the Euler system (1.1) within the framework of the ener
relaxation theory is the following. Given the numerical equilibrium solution at the tim
levelt"

(X, tM), ux, th), e(x,t"), (2.16)

this approximation is advanced to the next time laVgl = t" 4+ At in two steps:

o First step: relaxation. The two internal energig&, t") ande,(x, t™) are obtained by
(2.2) and the consistency condition (2.3):

p(p(x,t"), e(x, t™)
(y1 — Dp(x,tM)
ea(X, t") = (X, t") — e1(X, t").

e1(x, t") =

)

(2.17)

Notice that this step involves just one call to the pressure law per grid point and does
involve any derivatives of the pressure law or any iterations.

e Second step: evolution in time. FBF < t < t"1, we solve the Cauchy problem for
the relaxation system (2.1), with zero on the right side,

dp* +div(p’u*) =0, t>0,xeR,

dput +div(p*u* @ ut + pp) =0,

®E} +div((E} + p})u*) =0, (2.18)
dptes + div(p*utel) =0,
1
E} = 5,ok|uk|2 + ptet,
and the initial data,
P(X’tn)a u(thn)7Sl(xvtn)v‘gz(xvtn)a (219)
and we obtain at tim&g™t1-,
p O M) u(x, 1) e (X, M), e (x, tM). (2.20)

At last, we compute the equilibrium solution at tinfe? by

p (Xt = p(x, t"),
u(x, t"1) = u(x, t"t1), (2.21)

e(X, ") = 1 (x, t"TT) 4 en(x, t"7).
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Remark 1. The first step is clearly a relaxation phase, as it is equivalent to the solut
of the ODE problem fot > t",

to* =0,
)\u)» — 0’
T 222)
&Ef = Ap"(e3 — d(0" €1)).
dp*es = —ap"(e5 — o (0", €})),
with initial data at time levet",
P (X, "), u(x, t"7), e1(X, t"7), e2(x, t"7). (2.23)

and we letx. — +o00.

We now describe the numerical method we will use for the step of evolution in tin
Although our numerical results concern both one- and two-dimensional problems, for
plicity of presentation we shall restrict our description to one space dimension. As
are using the finite difference version of WENO schemes in [10], extensions to two
more spatial dimensions are simply done dimension by dimension. Essentially, the
dimensional code is the one-dimensional code with an outside “do loop.”

We have to solve for" <t < t"™*1 the system of four equations,

U + o«F(U) =0, +initial conditions given by (2.19) (2.24)
where

U = (p, pu, Ey, pea)",

(2.25)
2 T
F(U) = (pu, pu® + p1, (E1 + po)u, puez) .
In order to solve the ordinary differential equation
d
—U = L), (2.26)

dt

whereL (U) is a discretization of the spatial operator, we use a third-order TVD Runc
Kutta scheme [18].

Remark 2. We have two possibilities for the placement of the relaxation step: ee
Runge—Kutta inner stage or each time step. With the first example of section 3.3, we ¢
that the two approaches give nearly identical results in accuracy. Of course the se
approach is less costly. We thus perform all our calculations using the second approa

We now discretize the space into uniform intervals of stve and denotex; = j Ax.
Various quantities at; will be identified by the subscript.

We use the WENO procedure described in the previous subsection to obtain the sy
operatorL ; (U) which approximates-dx F (U) atx;. We have tested several possibilities
for the definition ofL(U) based on WENO schemes. The first one is to use a WEN
Lax—Friedrichs scheme with a full characteristic decomposition. For this purpose we r
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to compute a Roe matrix for the system (2.24) and its eigenvalues and eigenvectors.
details of this derivation are included in Appendix A.

The other possibility is to compute the first three components of the numerical fl
Fi /2. FAi1/20 Fa/ by using a WENO Lax—Friedrichs scheme with a decomposition o
the Euler system characteristics and to obtain the last numericaFflux, with a scalar
WENO Lax-Friedrichs scheme. This is possible because the first three equations of sy:
(2.24) are independent from the last one.

Remark 3. We have also tried to compute the last numerical flux by using a first-ord
scheme specially designed in order to preserve the maximum principle[fidt]. But with
this approach, we lose the accuracy of the high-order WENO scheme also for the o
variables.

Remark 4. In order to make comparisons in the numerical results we have also ir
plemented a WENO Lax—Friedrichs scheme with a full characteristic decomposition
a two molecular vibrating gas (see next section for a description of the related EOS).
this purpose we need a definition of the corresponding Roe average matrix. We give |
Appendix B. For the numerical comparisons for the other real gases we use a compor
wise WENO Lax—Friedrichs scheme which requires only the computation of the sou

velocity
C= /P, + P(Pe/P?). (2.27)

3. NUMERICAL RESULTS

3.1. Description of the Different Equations of States

We present here several equations of states which we will use in the computation.
find the second one in the paper of In [9], while the third one comes from Glaister [4]):

o Polytropic ideal gas The equation of states for a polytropic ideal gas (also calle
perfect gas) is
p(p, &) = (y — Dpe. (3.1)

Then we have

p,=U—De p.=(—Dp. (3.2)

Air under normal conditionsg andT moderate enough) can be considered as a perfect g
with y =7/5= 1.4 (approximately a mixture of two diatomic molecular species: 2D%
80% Ny).

e Two-molecular vibrating gasVhen the temperature increases the vibrational motio
of oxygen and nitrogen molecules in air becomes important, and specific heats vary \
temperatures. So that one must consider the thermally perfect, calorically imperfect mc
for two-molecular vibrating gas,

P(p, &) =rpT(e), (3.3)

where the temperatufe is given by the implicit expression

Ovib
—d'T __ QFwb , 3.4
A CR YA (34)
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withr =287.086J-kg™t- K=1,C" =r /(s — 1), ytr = 1.4,0.ip = 10° K, anda =r. Then
we have

rp
e'(T(e)

P, = rT(e), pe= (3-5)

e Osborne modeR. K. Osborne from the Los Alamos Scientific Laboratory has deve
oped a quite general equation of states in the form [17]

p(p, &) = (C(a1 + ap¢) + E(bg + ¢(by + bp¢) + E(co + €12))),  (3.6)

E + o
whereE = poe and¢ = p/po — 1 and the constantsy, a;, ag, bo, b1, bz, o, €1, ¢o de-
pend on the material in question. The typical values for watepgre10-2, a; = 3.84 x
1074, a,=1.756x 1073, by =1.312x 1072, b; = 6.265x 102, b, =0.2133,co = 0.5132,
¢, =0.6761, andpy = 2. x 10°2. Then we have

= 2 E(b; +2b E ,
P, o(E+ d0) ((a1 + 2a¢) + E(by + 2b2¢ + Eqyp)) -
_ ___Po £0 '
pe = E+¢op+ E+¢0(b0+§(b1+b2§)+2E(Co+01C))-

3.2. One-Dimensional Cases

ExamMPLE 1 (1D Riemann problems with perfectgas). We consider here two well-kno
problems which have the following Riemann type initial conditions:

{uL if x <O,
ux, 0) = .

ur if x>0.
The first one is Sod’s problem [22]. The initial data are

(IOLv UL, pL) = (11 0» 1)» (IORv uRa pR) = (01257 Ov 01)
The second one is proposed by Lax [12] with
(oL, UL, pL) = (0.445 0.698 3.528), (pr,Ur, Pr) = (0.5,0, 0.571).

Of course, for this perfect gas situation there is no need to use the relaxation m
in practice. The purpose of this test problem is to test the behavior of different relaxa
models (differeny;'s) and different ways of treating the relaxed system (fully characteris
and partially characteristic for the first three equations only).

For this example, a uniform grid of 100 points are used and every 2 points are draw
the figures.

We first give, in Table I, a CPU time comparison among the traditional WENO char
teristic scheme for the perfect gas, and the WENO scheme applied to the relaxation sy
both with a fully characteristic decomposition and with a partially characteristic decomp
tion for the first three equations only. The calculation is done on a SUN Ultral workstat
We can see that, while a fully characteristic decomposition is significantly more costly,
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TABLE |

CPU Time (in seconds) of Different Schemes for the Sod and Lax
Shock Tube Problems for a Perfect Gas

WENO with  Relaxed WENO with  Relaxed WENO with
Case characteristic full characteristic partial characteristic
Sod shock 2.28 3.49 291
Lax shock 3.32 4.93 4.08

partially characteristic decomposition is only slightly more costly than the WENO schel

applied to the original perfect gas Euler equations.

In Figs. 1 and 3, we present the comparison for the Sod’s and Lax’s shock tube proble
of the fifth-order WENO schemes, applied directly to the perfect gas Euler equations us

a characteristic decomposition and applied to the relaxation modepyittB8, using only

partial characteristic decomposition of the first three equations. We can see that the re
are very close, except for the slight over- and undershoots in entropy for the relaxal

model calculation. This indicates the feasibility of using the relaxation model.

exact
— —o— - WENO charac.
_______ relax. WENO F

09

11 F

08
07
ZosF
[
Sos
04 F
03

exact
— —s— — WENO charac.
——t— relax. WENO

07F

06

] 02 I
E 01 F |
01fF E \
F ok L -
obiu 1 1 P P IR | Ec |
4 -2 0 2 4 4
X
! exact 08| exact
ook — —a— — WENO charac. F — —s— - WENO charac.
- relaxx WENO | | Lo ——w—ee relax. WENO

w e

xopPE

FIG. 1.
teristic withy; = 3.0.

Sod’s shock tube problem with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial chara
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exact
— —s— - pantial charac.
— o tull charac,

exact
— —o— - gammai=3.0
— i gamma1=30.0

exact
— —a— - WENO compo.
————— - relax. WENO

FIG. 2. Sod’s shock tube problem with WENO-LF-5. Comparisons of partial and full characteristic c
compositions for the relaxation model with=3 (a), y1 =3 andy,; = 30 for the relaxation model with partial
characteristic decomposition (b), and the relaxation model with partial characteristic decompositipn=a&h
versus the component-wise WENO applied to the original perfect gas Euler equations (c).

In Figs. 2 and 4, we present the comparison for the Sod’s and Lax’s shock tube p
lems, of the fifth-order WENO schemes. The top left figure compares the full character
decomposition for the relaxation model, with a partial characteristic decomposition for
first three equations only, for, = 3. We can see that the results are quite close, again
dicating the feasibility of using the less costly partial characteristic decomposition for
relaxation model. The top right figure compares the effect of differgatin the relaxation
model. The apparently bigger corresponds to larger numerical dissipation. This indicat
that one should always choose the smallest posgibleubject to stability considerations.
The bottom figure compares the relaxation WENO results/fet 3 and a partial char-
acteristic decomposition, with a component-wise WENO scheme applied directly on
original perfect gas Euler equations. Although neither uses the correct characteristic i
mation, apparently the relaxation model results are better than the componentwise re
especially for the Lax’s problem in Fig. 4.

ExaMPLE 2 (1D Riemann problems with real gases). In this example we compute
solutions to the Riemann shock tube problem for the two-molecular vibrating gas (3.3)—(
and the Osborne model (3.6)—(3.7), with the following initial conditions in Table II.
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TABLE Il

Initial Conditions for the Test Cases for Real Gases

Specific internal

Case State Density Velocity energy
A Left 0.066 0.0 7.22e6
Right 0.030 0.0 1.44e6
B Left 1.40 0.0 2.22e6
Right 0.14 0.0 2.24e6
C Left 1.2900 0.0 1.95e6
Right 0.0129 0.0 2.75e6
D Left 1.00 0.0 2.00e6
Right 0.01 0.0 2.50e5
E Left 0.01 2200.0 1.44e5
Right 0.14 0.0 4.00e5
15 exact exact
— —o— - WENO charac. — —o— - WENO charac.
—-—s—-- relax. WENO 16 —— relax. WENO
B2t
my
.
1 I J
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g r E
Pk 3
[ i b 04f
o5 i Deesesess E
i i 02fF |
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1 1 P T Lt - | ol PR 1 1
4 2 0 2 4 4 -2 o 2 4
X X
exact 25 exact
35 - ~0— - WENO charac. — — —°— — WENQO charac.
relax. WENO [ \ e relax. WENO
L b
s F i
2r i
A [ i
25 r L !
F F !
5 , g §1A5 - 1
© F E]
£ s
15F E
) : i
r 05
L 1 | - L 1 1 ol L ot 1 L
4 2 0 2 ] 4 2 0 2 4
x X
FIG. 3.

teristic withy; = 3.0.

Lax’s shock tube problem with WENO-LF-5 characteristic and relaxed WENO-LF-5 partial chara
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{3} )
15 exact 15~ exact
— —o— - partial charac, ) — —o— - gammat=3.0
—-—1—.~ full charac. S ittt gamma1=30.0
W“ { 2
Py | [
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L | 1 3 o
1k ! 1k i
£ £
& @
S S
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i
b \
1k
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o
°
1o
i !
05 i e
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FIG. 4. Lax’s shock tube problem with WENO-LF-5. Comparisons of partial and full characteristic d
compositions for the relaxation model with=3 (a), y1 =3 andy; = 30 for the relaxation model with partial
characteristic decomposition (b), and the relaxation model with partial characteristic decompositipn=#&h
versus the component-wise WENO applied to the original perfect gas Euler equations (c).

For this example, a uniform grid of 200 points are used and every four points are dr
in the figures. Also, the “exact solutions” in the figures are obtained with the best sche
using 2000 points.

We first give a CPU time comparison between the full characteristic decomposition
the original model and the partial characteristic decomposition, using only the first tt
equations of the relaxation model, for the two-molecular vibrating gas model, in Table
We can see that the partial characteristic decomposition for the relaxed model is usually
than half as costly than the full characteristic version for the original system. Although
relaxed model has one more equation, it does not require the computation of the complit
derivatives of the EOS.

In Fig. 5 we show the comparison of the full characteristic decomposition for the origi
model and the partial characteristic decomposition using only the first three equatior
the relaxation model, for the two-molecular vibrating gas model, with the case A ini
condition. The results are almost identical, indicating that the relaxation model wit
partial characteristic decomposition works well with a much-reduced cost.

In Fig. 6 we show the comparison of the component WENO scheme on the orig
system and the partially characteristic WENO scheme on the relaxed systep wit.0,
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TABLE Il
CPU Time (in Seconds) Depending on Full

or Partial Characteristic Decomposition with
a Two-Molecular Vibrating Gas

WENO with

Relaxed WENO with
partial characteristic

Case characteristic
A 12.68
B
C
D
E

4.8
12.53
15.0
15.0

5.21
2.63
4.87
5.35
7.84

for the Osborne gas model with the case A initial condition. We can see that the result of
relaxed model is much better, especially for the density. This indicates that the relaxa

model is a good one for the computation of real gases.

In Fig. 7 we show the comparison of takipg= 10, which satisfies the stability condition
(2.4), andy; = 2, which satisfies only the second inequality in the stability condition (2.4) fc
the partial characteristic decomposition using only the first three equations of the relaxa
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FIG.5. Case A+ two vibrating molecular gas model with WENO-LF-5 characteristic and relaxed WENO

LF-5 partial characteristic with, = 1.5.
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FIG. 6. Case A+ Osborne gas model with componentwise WENO-LF-5 for the original system and rela
WENO-LF-5 partial characteristic witpy = 2.0.

model and the Osborne gas model with the case A initial condition. We can see tha
y1 = 2 results are stable and less dissipative, indicating that in practice one does not al
have to choosg; satisfying both inequalities in condition (2.4).

We have also tested the same problems for the other initial condition cases B, C, D, al
The results are mostly similar qualitatively, as in case A. To save space we will not pre
the results here.

3.3. Two-Dimensional Cases

ExampLE 3 (An isentropic vortex). This example is used to verify the accuracy of t
relaxation approach, especially the placement of the relaxation steps during time step
The gas is ideal but we still use the relaxation model. We consider the following ideali
problem for the Euler equations in 2D: the mean flowis 1, p = 1 and(u, v) = (1, 1)
(diagonal flow). We add to this flow an isentropic vortex (perturbatioquirv) and the
temperaturd = p/p; no perturbation in the entrogy = P/p?),

(y —De?
8ym?

(SU, 8v) = —— ex 1-r? (—y. %), 8T =
OV =P T2 %), of =

expl—r?), 8§S=0,

where(X, y) = (X — 5,y — 5), r?> = x? 4+ y?, and the vortex strength= 5. See [21].
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FIG.7. Case A+ Osborne gas model with the relaxed WENO-LF-5 partial characteristicywith10.0 and
y=2.0.

The computational domain is taken as 10, ] x [0, 10], extended periodically in both
directions. This allows us to perform long-time simulation without having to deal with
large domain.

Itis clear that the exact solution of the Euler equation with the above initial and bound:
conditions is just the passive convection of the vortex with the mean velocity.

In Table IV we show the accuracy resulttat 10 (one time period). We can see that
WENO for the relaxed model witjy = 3 gives a somewhat larger error than WENO appliec
directly to the original system, but the order of accuracy is correct. Moreover, to place
relaxation step for each Runge—Kutta inner stage or just for each time step seems to

TABLE IV
L1 Error and Order of Accuracy at t = 10 (1 Period)

Relaxed WENO Relaxed WENO
WENO each time step each R-K step
Nb. points L1 error Accuracy L1 error Accuracy L1 error Accuracy
20x 20 1.07e-2 1.22e-2 1.22e-2
40 x 40 1.06e-3 3.3 2.16e-3 25 2.17e-3 25
80 x 80 6.50e-5 4.0 1.77e-4 3.6 1.78e-4 3.6

160x 160 2.09e-6 4.9 7.57e-6 4.6 7.60e-6 4.6
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Density WENO-LF-5 charac.
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FIG. 8. Double-Mach reflection, perfect gas, 480120 grid points.

almost identical results. We have thus used the less costly version of putting the relax
step for every time step in all the numerical examples in this paper.

ExampPLE 4 (Double Mach reflection). The computational domain is chosen to
[0, 4] x [0, 1], although only part of it ([p3] x [0, 1]) is shown. The reflecting wall lies at
the bottom of the computational domain, starting frars 1/6. Initially a right-moving
Mach 10 shock is positioned &t, y) = (1/6, 0) and makes a 60angle with thex axis.
For the bottom boundary, the exact postshock condition is imposed for the part froth
to x =1/6 and a reflective boundary condition is used for the rest. At the top boundan
our computational domain, the flow values are set to describe the exact motion of the N
10 shock (See [23] for a detailed description of this problem.)
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FIG. 9. Double-Mach reflection, perfect gas, 96§®40 grid points.

Firstwe present the results for a perfect gas. We compare the results using WENO dire
on the original system [10] and using it on the relaxed model with- 1.5 andy; = 3.0
in Fig. 8 for a mesh of 48& 120 points and Fig. 9 for a mesh of 9&®40 points. We can
see that the relaxed model results are quite satisfactory, although apiggsults in some
small oscillations.

Next, we show the results of the same problem with the two-molecular vibrating g
The purpose here is to show that the relaxation model-based algorithm does work, rz
than the details of the flow with more physical models. The results with both & 420
grid and a 960« 240 grid are shown in Fig. 10. Comparing with the results in [3], we ca
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FIG. 10. Double-Mach reflection, two vibrating molecular gas.

see that the main features, such as the main shock being closer to the bottom bounda
the shock below the triple point being bent, are also observed here.

4. CONCLUDING REMARKS

We have applied the fifth-order WENO schemes to a relaxation model to compute
Euler equations of real gases. The algorithm does not depend on the specific form c
equation of states and does not need to compute the derivatives of the pressure law.
and two-dimensional examples are shown to illustrate the accuracy and robustness
algorithm. The algorithm seems to work well, even for strong (Mach 10) shocks. The ch
of y, in the relaxation model influences the numerical results, as the biggaplies larger
numerical viscosity. In practice one should chopsas small as possible, subject to stability
restraints.

APPENDIX A: ROE MATRIX FOR THE RELAXATION SYSTEM

Let us consider two statés andU, ; then the Roe matrix for the relaxation system (2.24
is
0 1 0
n-3% ~(n—-3pu  (n—-1 0
U(-Hi+ (01 -DY) Hi—(n-D@ pd  Of’
—&oUu Eo 0 u

AU U, = (A1)
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where the averaged statel, H; are defined by

0 = /Pi/Pr, Uu=oau +oyly,
Vo - (A.2)

leaIHL“l‘arHL» 8_2=al‘91|+ar81,,

with
Hi = (&1 + pu)/p,
Jor I (A.3)

o =1—q

o = ————, = .
NI NI
The four eigenvalues oA are

Q@=U a=uU+C a=U, (A.4)

Ol

a=0-—

where the averaged sound spedths the usual expression
&= \/y1pi/p. (A.5)

A set of right eigenvectors can be

1 1 1 0
_ u-— c_ _ u _ u+c _ 0
r — , , =] — , = A.6
q_ % = gioe 2= 4 (A.6)
5_2 0 5_2 1
And the corresponding orthogonal set of left eigenvectors is
_ 1 -
Lo+ ) b, Sb-9) b,
i 1L O I T B B LS B
biz ’ —b2 k) biz ’ _8_2b2 ’
2 2 1
0 0 0
(A7)
where
(1 — Hu? (n-1
bj=———=—, b A.8
L= o = o (A8)

APPENDIX B: ROE MATRIX FOR A TWO-MOLECULAR VIBRATING GAS

Let us consider two staté$ andU, ; then the Roe matrix for an Euler system of real gas
is (see [6] for details)

(B.1)
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wherel, H are the Roe average values of the velocity and the total specific enthe
(H=¢+1/2u* + p/p),

P =+ /pr U (B.2)
eV |

NN

andy andx are two parameters which must satisfy

<l

Ap =kApe+ xAp (B.4)

with Ap = pr — pi, Ape = prer — pr&r, andAp = p(or, &) — P(or, &).
The definitions foic ‘and y proposed by In [9] for a two-molecular vibrating gas are

r(T(e) = T(e) if & # g,
=191 p&(:; Pelpr)y _ T (85
2B ) =y e =a=e
Ap—Af::Apa’ if or # p,
=19 35(Pp(0 80 = 2P0, &) + Py, &) — Lpelp, &) (B.6)
=35r(T@E) —aT @)+ T(e) —&T (), if or = o1 = p.

The definitions of the eigenvalues and right and left eigenvectors are easy to obtair
are omitted here.
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